1个回答
展开全部
解:
对数法或许简单点。比较(a)^a(b)^b与(ab)^(a+b/2)的大小,转化为
lg(a^a×b^b)与lg(ab)^(a/2+b/2)的大小。
lg(a^a×b^b) = alga + blgb
lg(ab)^(a/2+b/2) = (a+b)/2 lga + (a+b)/2 lgb
lg(a^a×b^b) - lg(ab)^(a/2+b/2)
= alga + blgb - (a+b)/2 lga -(a+b)/2 lgb
= (a-b)/2 lga - (a-b)/2 lgb
= (a-b)/2 × (lga-lgb)
∵ 若a<b,则 lga<lgb;若a≥b,则 lga≥lgb
∴ 结果总是非负的,即 (a)^a(b)^b ≥ (ab)^(a+b/2)
对数法或许简单点。比较(a)^a(b)^b与(ab)^(a+b/2)的大小,转化为
lg(a^a×b^b)与lg(ab)^(a/2+b/2)的大小。
lg(a^a×b^b) = alga + blgb
lg(ab)^(a/2+b/2) = (a+b)/2 lga + (a+b)/2 lgb
lg(a^a×b^b) - lg(ab)^(a/2+b/2)
= alga + blgb - (a+b)/2 lga -(a+b)/2 lgb
= (a-b)/2 lga - (a-b)/2 lgb
= (a-b)/2 × (lga-lgb)
∵ 若a<b,则 lga<lgb;若a≥b,则 lga≥lgb
∴ 结果总是非负的,即 (a)^a(b)^b ≥ (ab)^(a+b/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询