矩阵跟线性变换到底是怎么个对应法
1个回答
2017-10-24
展开全部
级数收敛,就是其前n项和的极限存在。
由于 1/[n(n+1)(n+2)]=1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]} ,因此
Sn=1/(1*2*3)+1/(2*3*4)+......+1/[n(n+1)(n+2)]
=1/2*{[1/(1*2)-1/(2*3)]+[1/(2*3)-1/(3*4)]+......+1/[n(n+1)]-1/[(n+1)(n+2)]}
=1/2*{1/2-1/[(n+1)(n+2)]}
=1/4-1/[2n(n+1)(n+2)] ,
当 n 趋于无穷时,Sn→1/4 ,
因此,级数收敛
由于 1/[n(n+1)(n+2)]=1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]} ,因此
Sn=1/(1*2*3)+1/(2*3*4)+......+1/[n(n+1)(n+2)]
=1/2*{[1/(1*2)-1/(2*3)]+[1/(2*3)-1/(3*4)]+......+1/[n(n+1)]-1/[(n+1)(n+2)]}
=1/2*{1/2-1/[(n+1)(n+2)]}
=1/4-1/[2n(n+1)(n+2)] ,
当 n 趋于无穷时,Sn→1/4 ,
因此,级数收敛
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询