求曲线X²+(y-5)²=16所围图形绕X轴旋转所得旋转体的体积?
2个回答
展开全部
x^2+(y-5)^2 =16
(y-5)^2 = 16-x^2
y= 5±√(16-x^2)
let
x=4sinu
dx=4cosu du
x=0, u= 0
x=4 , u=π/2
Vy
=π∫y^2 dx
=π∫(-4->4) [5+√(16-x^2)]^2 dx - π∫(-4->4) [5-√(16-x^2)]^2 dx
=20π∫(-4->4) √(16-x^2) dx
=40π∫(0->4) √(16-x^2) dx
=40π∫(0->π/2) 16 (cosu)^2 du
=320π∫(0->π/2) (1+cos2u) du
=320π [ x+(1/2)sin2u] |(0->π/2)
=160π^2
(y-5)^2 = 16-x^2
y= 5±√(16-x^2)
let
x=4sinu
dx=4cosu du
x=0, u= 0
x=4 , u=π/2
Vy
=π∫y^2 dx
=π∫(-4->4) [5+√(16-x^2)]^2 dx - π∫(-4->4) [5-√(16-x^2)]^2 dx
=20π∫(-4->4) √(16-x^2) dx
=40π∫(0->4) √(16-x^2) dx
=40π∫(0->π/2) 16 (cosu)^2 du
=320π∫(0->π/2) (1+cos2u) du
=320π [ x+(1/2)sin2u] |(0->π/2)
=160π^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询