对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)...
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x...
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数f(x)=13x3-12x2+3x-512,请你根据上面探究结果,解答以下问题 (1)函数f(x)=13x3-12x2+3x-512的对称中心为______; (2)计算f(12013)+f(22013)+f(32013)+…+f(20122013)=______.
展开
1个回答
展开全部
(1)∵f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,
∴f′(x)=x2-x+3,f''(x)=2x-1,
令f''(x)=2x-1=0,得x=
1
2
,
∵f(
1
2
)=
1
3
×(
1
2
)3-
1
2
×(
1
2
)2-
5
12
+3×
1
2
=1,
∴f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为(
1
2
,1),
(2)∵f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为(
1
2
,1),
∴f(x)+f(1-x)=2,
∴f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)=2×1006=2012.
故答案为:(
1
2
,1),2012.
1
3
x3-
1
2
x2+3x-
5
12
,
∴f′(x)=x2-x+3,f''(x)=2x-1,
令f''(x)=2x-1=0,得x=
1
2
,
∵f(
1
2
)=
1
3
×(
1
2
)3-
1
2
×(
1
2
)2-
5
12
+3×
1
2
=1,
∴f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为(
1
2
,1),
(2)∵f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为(
1
2
,1),
∴f(x)+f(1-x)=2,
∴f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)=2×1006=2012.
故答案为:(
1
2
,1),2012.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询