4x³-33x²+82x-61=0的解

1个回答
展开全部
摘要 4x³-33x²+82x-61=0的解为x1=4.33,x2=1.39,x3=2.53
咨询记录 · 回答于2021-11-13
4x³-33x²+82x-61=0的解
4x³-33x²+82x-61=0的解为x1=4.33,x2=1.39,x3=2.53
一元三次方程的解法1、一元三次方程(英文:cubic equation in one unknown)是只含有一个未知数(即“元”),并且未知数的最高次数为3次的整式方程。一元三次方程的标准形式是ax^3+bx^2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法为卡尔丹公式法。2、卡尔丹判别法当Δ>0时,方程有一个实根和一对共轭虚根;当Δ=0时,方程有三个实根,其中有一个两重根;当Δ<0时,方程有三个不相等的实根。3、因式分解法因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。4、导数求解法利用导数,求的函数的极大极小值,单调递增及递减区间,画出函数图像,有利于方程的大致解答,并且能快速得到方程解的个数,此法十分适用于高中数学题的解答。5、盛金公式法三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式——盛金公式,A=b^2-3ac;B=bc-9ad;C=c^2-3bd和总判别式Δ=B^2-4AC。并建立了新判别法——盛金判别法。6、盛金定理当b=0,c=0时,盛金公式1无意义;当A=0时,盛金公式3无意义;当A≤0时,盛金公式4无意义;当T1时,盛金公式4无意义。当b=0,c=0时,盛金公式1是否成立?盛金公式3与盛金公式4是否存在A≤0的值?盛金公式4是否存在T1的值?盛金定理给出如下回答:盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式1仍成立)。盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式1解题)。盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式1解题)。盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式2解题)。盛金定理5:当A0(此时,适用盛金公式2解题)。
盛金定理7:当Δ=0时,若B≠0,盛金公式3一定不存在A≤0的值(此时,适用盛金公式3解题)。盛金定理8:当Δ<0时,盛金公式4一定不存在A≤0的值。(此时,适用盛金公式4解题)。盛金定理9:当Δ<0时,盛金公式4一定不存在T≤-1或T≥1的值,即T出现的值必定是-10时,不一定有A<0。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消