特征值相乘为什么等于行列式?
1个回答
展开全部
因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘。记矩阵为A,记λ为A的特征值,按照定义有:f(λ)=det(A-λE)=0,f(λ)为A的特征多项式,A的所有特征值为f(λ)=0的根,根据韦达定理,方程的根的乘积与系数的关系,特征值的乘积恰好为矩阵A的主子式的代数和,而这个和等于detA。所以特征值乘积等于行列式的值。
行列式的性质:
1.行列式A中某行(或列)用同一数k乘,其结果等于kA。
2.行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3.若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4.行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询