已知函数f(x)=a-x2/x+lnx(a∈R,x∈[1/2,2])
(I)当a∈[-2,1/4)时,求f(x)的最大值;
(Ⅱ)设g(x)=[f(x)-lnx]·x^2,k是g(x)图象上不同两点的连线的斜率,是否存在实数a,使得k<1恒成立?若存在,求口的取值范围;若不存在,请说明理由.
是的,是(a-x^2)/x+lnx 展开
对f(x)求导
f'(x)=(-x^2+a)/x^2+1/x
=(-x^2+x-a)/x^2
令-x^2+x-a=0
Δ=1-4a>0
故x=(1+根号下(1-4a))/2或x=(1-根号下(1-4a))/2(舍)
因<1/2(1+根号下(1-4a))/2≤2
①1/2<(1+根号下(1-4a))/2<2时,即a≠-2时
x [1/2,(1+根号下(1-4a))/2) (1+根号下(1-4a))/2) ((1+根号下(1-4a)/2),2]
f'(x) + 0 -
f(x) ↗ 极大值 ↘
故f(x)max=f(1+根号下(1-4a))/2)=4a/(1+根号下(1-4a))-1+ln(1+根号下(1-4a))/2)
当a=-2时,f'(x)≥0,f(x)在域上单增
故f(x)max=f(2)=f(1+根号下(1-4a))/2)=ln2-3=4a/(1+根号下(1-4a))-1+ln(1+根号下(1-4a))/2)
综上;f(x)max=(4a-1)/(1+根号下(1-4a))-1+ln(1-根号下(1-4a))/2)
第二问等价于g'(x)max<1
求出g'(x)=-3x^2+a
①a≤0
结论成立
②a>0
因g'(x)在全域单减
故g'(x)max=g'(1/2)<1
解得0<a<7/4
综上;a∈(-∞,7/4)