已知函数f(x)=x^3-4x^2-3x?
1个回答
展开全部
f(x)和g(x)有三个交点,即f(x)-g(x)=0有三个不等根
f(x)-g(x)
=x^3-4x^2-3x-bx=0
x(x^2-4x-3-b)=0
明显有根x=0
要求变为
x^2-4x-3-b=0有两个不等非零根
等价于
(-4)^2-4(-3-b)>0
且-3-b不为0
解得
b>-7且b不等于-3,1,显然 b=0时是成立的
当b不为0时 令f(x)=x^3-4x^2-3x=bx 化简得x(x^2-4x-3-b)=0
若要有3解 则x^2-4x-3-b=0有两个不为0的解 也就是德尔塔要大于0且b不能为-3 解出b<1且b不为3 最终b的范围是b<-3或-3 2,
东北雪儿飞 幼苗
共回答了121个问题 向TA提问 举报
令f(x)=g(x)
得到
x^3-4x^2-3x=bx
其一交点为(0,0)
当x≠0
x^2-4x-(b+3)=0
令△=16+4(b+3)>0
→b>-7 1,已知函数f(x)=x^3-4x^2-3x
是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在请求出实数b的取值范围; 若不存在,试说明理由
f(x)-g(x)
=x^3-4x^2-3x-bx=0
x(x^2-4x-3-b)=0
明显有根x=0
要求变为
x^2-4x-3-b=0有两个不等非零根
等价于
(-4)^2-4(-3-b)>0
且-3-b不为0
解得
b>-7且b不等于-3,1,显然 b=0时是成立的
当b不为0时 令f(x)=x^3-4x^2-3x=bx 化简得x(x^2-4x-3-b)=0
若要有3解 则x^2-4x-3-b=0有两个不为0的解 也就是德尔塔要大于0且b不能为-3 解出b<1且b不为3 最终b的范围是b<-3或-3 2,
东北雪儿飞 幼苗
共回答了121个问题 向TA提问 举报
令f(x)=g(x)
得到
x^3-4x^2-3x=bx
其一交点为(0,0)
当x≠0
x^2-4x-(b+3)=0
令△=16+4(b+3)>0
→b>-7 1,已知函数f(x)=x^3-4x^2-3x
是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在请求出实数b的取值范围; 若不存在,试说明理由
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询