已知函数f(x)=根号3sin2x+2cos^2 *x(1)求f(π/12)?
1个回答
展开全部
f(x)=根号(3sin2x+2cos^2 *x)
=根号(3sin2x+1+cos2x)
=根号[(根10)*sin(2x+t) +1] (cost=3/根号10)
f(π/12)=根号(3sinπ/6+1+cosπ/6)
=根号(3/2+1+根3 /2)
=根号(5/2+根3 /2)
(2)f(x)=根号[(根10)*sin(2x+t) +1] (cost=3/根号10,t=arccos(3/根号10))
最小正周期为2π/2=π
单调增区间为:2kπ-π/2,2,f(x)=√3sin2x+2(1+cos2x)/2
=√3sin2x+cos2x+1
=2(sin2xcosπ/6+cos2xsinπ/6)+1
=2sin(2x+π/6)+1
所以f(π/12)=2sinπ/3+1=√3+1
f(x)=2sin(2x+π/6)+1
所以T=2π/2=π
sin增则2kπ-π/2<2x+π/6<2kπ+π/2
2kπ-2π/3<2x<2kπ+π/3
kπ-π/3 所以增区间(kπ-π/3,kπ+π/6),1,已知函数f(x)=根号3sin2x+2cos^2 *x(1)求f(π/12)
(2)求函数f(x)的最小正周期和单增区间
=根号(3sin2x+1+cos2x)
=根号[(根10)*sin(2x+t) +1] (cost=3/根号10)
f(π/12)=根号(3sinπ/6+1+cosπ/6)
=根号(3/2+1+根3 /2)
=根号(5/2+根3 /2)
(2)f(x)=根号[(根10)*sin(2x+t) +1] (cost=3/根号10,t=arccos(3/根号10))
最小正周期为2π/2=π
单调增区间为:2kπ-π/2,2,f(x)=√3sin2x+2(1+cos2x)/2
=√3sin2x+cos2x+1
=2(sin2xcosπ/6+cos2xsinπ/6)+1
=2sin(2x+π/6)+1
所以f(π/12)=2sinπ/3+1=√3+1
f(x)=2sin(2x+π/6)+1
所以T=2π/2=π
sin增则2kπ-π/2<2x+π/6<2kπ+π/2
2kπ-2π/3<2x<2kπ+π/3
kπ-π/3 所以增区间(kπ-π/3,kπ+π/6),1,已知函数f(x)=根号3sin2x+2cos^2 *x(1)求f(π/12)
(2)求函数f(x)的最小正周期和单增区间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询