一道大一高数定积分题
4个回答
展开全部
原式=∫[-π/2,π/2] costsin^4tdt+∫[-π/2,π/2] x^2sin^7tdt
(注意后一项,被积函数是奇函数,积分区间关于原点对称,所以值为0)
=∫[-π/2,π/2] costsin^4tdt
=∫[-π/2,π/2] sin^4tdsint
=1/5sin^5t[-π/2,π/2]
=2/5
(注意后一项,被积函数是奇函数,积分区间关于原点对称,所以值为0)
=∫[-π/2,π/2] costsin^4tdt
=∫[-π/2,π/2] sin^4tdsint
=1/5sin^5t[-π/2,π/2]
=2/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=∫(-π/2,π/2) costsin^4t dt + ∫(-π/2,π/2) x^2*sin^7t dt
因为x^2*sin^7t是奇函数,且积分区间关于原点对称,所以 ∫(-π/2,π/2) x^2*sin^7t dt=0
原式=∫(-π/2,π/2) sin^4t d(sint) + 0
=1/5*sin^5t|(-π/2,π/2)
=1/5+1/5
=2/5
因为x^2*sin^7t是奇函数,且积分区间关于原点对称,所以 ∫(-π/2,π/2) x^2*sin^7t dt=0
原式=∫(-π/2,π/2) sin^4t d(sint) + 0
=1/5*sin^5t|(-π/2,π/2)
=1/5+1/5
=2/5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
前面半部分为sint^4 dsint,后部分为奇函数,结果为2/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |