如图,已知抛物线的顶点坐标是(2,-1),且经过点A(5,8)(1)求该抛物线的解析式;(2)设该抛物线与
如图,已知抛物线的顶点坐标是(2,-1),且经过点A(5,8)(1)求该抛物线的解析式;(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求...
如图,已知抛物线的顶点坐标是(2,-1),且经过点A(5,8)(1)求该抛物线的解析式;(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;(3)设点P是x轴任一点,连接AP、BP.试求当AP+BP取得最小值时点P的坐标.
展开
1个回答
展开全部
(1)设抛物线的解析式为y=a(x-2)2-1,
∵抛物线经过A(5,8),∴8=a(5-2)2-1,
解得:a=1
∴y=(x-2)2-1(或y=x2-4x+3);
(2)令x=0得y=3,
故B (0,3 )
令y=0得x2-4x+3=0,解得x1=1,x2=3,
进而得出(1,0 ),D (3,0 );
(3)取点B关于x轴的对称点B′(0,-3),连接AB′交x轴于点P.
则PB=PB′,∴AP+BP=AP+PB′=AB′,
而PB′为直线段,∴AP+BP的最小值为线段AB′.
设直线AB′的解析式为y=kx+b过点A(5,8)和B′(0,-3),
∴
,
解得:
,得AB′的解析式为:y=
x?3,
当y=0时,x=
,
∴点P的坐标为(
,0).
∵抛物线经过A(5,8),∴8=a(5-2)2-1,
解得:a=1
∴y=(x-2)2-1(或y=x2-4x+3);
(2)令x=0得y=3,
故B (0,3 )
令y=0得x2-4x+3=0,解得x1=1,x2=3,
进而得出(1,0 ),D (3,0 );
(3)取点B关于x轴的对称点B′(0,-3),连接AB′交x轴于点P.
则PB=PB′,∴AP+BP=AP+PB′=AB′,
而PB′为直线段,∴AP+BP的最小值为线段AB′.
设直线AB′的解析式为y=kx+b过点A(5,8)和B′(0,-3),
∴
|
解得:
|
11 |
5 |
当y=0时,x=
15 |
11 |
∴点P的坐标为(
15 |
11 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询