如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各

如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.证法1:如... 如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.证法1:如图2,延长BC到D,过点C画CE∥BA∵BA∥CE(作图所知)∴∠B=______(两直线平行,同位角相等),∠A=∠2 (______ ).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)∴∠A+∠B+∠ACB=180°(等量代换)(1)请补全上述证明过程.(2)如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB,这种添加辅助线的方法也能证明∠A+∠B+∠C=180°.请完成说理过程.证法2:如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB. 展开
 我来答
方惬VR
推荐于2016-09-20 · 超过68用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:167万
展开全部
(1)证法1:如图2,延长BC到D,过点C画CE∥BA
∵BA∥CE(作图所知)
∴∠B=∠1(两直线平行,同位角相等),
∠A=∠2(两直线平行,内错角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换).
故答案为:∠1;两直线平行,内错角相等;

(2)证法2:如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB,
∴∠1=∠B,∠3=∠C,∠4=∠A,
∵FG∥AB,
∴∠2=∠4,
∴∠2=∠A,
∵∠1+∠2+∠3=180°,
∴∠A+∠B+∠C=180°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式