(2013?威海)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列
(2013?威海)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠AB.BD平分...
(2013?威海)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是( )A.∠C=2∠AB.BD平分∠ABCC.S△BCD=S△BODD.点D为线段AC的黄金分割点
展开
展开全部
A、∵∠A=36°,AB=AC,
∴∠C=∠ABC=72°,
∴∠C=2∠A,正确,
B、∵DO是AB垂直平分线,
∴AD=BD,
∴∠A=∠ABD=36°,
∴∠DBC=72°-36°=36°=∠ABD,
∴BD是∠ABC的角平分线,正确,
C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,
D、∵∠C=∠C,∠DBC=∠A=36°,
∴△DBC∽△CAB,
∴
=
,
∴BC2=CD?AC,
∵∠C=72°,∠DBC=36°,
∴∠BDC=72°=∠C,
∴BC=BD,
∵AD=BD,
∴AD=BC,
∴AD2=CD?AC,
即点D是AC的黄金分割点,正确,
故选C.
∴∠C=∠ABC=72°,
∴∠C=2∠A,正确,
B、∵DO是AB垂直平分线,
∴AD=BD,
∴∠A=∠ABD=36°,
∴∠DBC=72°-36°=36°=∠ABD,
∴BD是∠ABC的角平分线,正确,
C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,
D、∵∠C=∠C,∠DBC=∠A=36°,
∴△DBC∽△CAB,
∴
BC |
AC |
CD |
BC |
∴BC2=CD?AC,
∵∠C=72°,∠DBC=36°,
∴∠BDC=72°=∠C,
∴BC=BD,
∵AD=BD,
∴AD=BC,
∴AD2=CD?AC,
即点D是AC的黄金分割点,正确,
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询