在平面内有n(n∈N*,n≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(

在平面内有n(n∈N*,n≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(5)的值是______.f(n)的表达式是... 在平面内有n(n∈N*,n≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(5)的值是 ______.f(n)的表达式是 ______. 展开
 我来答
血刺续殇擰c
2014-10-11 · TA获得超过109个赞
知道答主
回答量:107
采纳率:0%
帮助的人:151万
展开全部
通过动手作图,可知f(3)=7,f(4)=11,f(5)=16,
从中可归纳推理,得出f(n)=f(n-1)+n,则f(n)-f(n-1)=n,
f(n-1)-f(n-2)=n-1,
f(n-2)-f(n-3)=n-2,

f(5)-f(4)=5,
f(4)-f(3)=4,
将以上各式累加得:
f(n)-f(3)=n+(n-1)+(n-2)+…+5+4=
(4+n)(n?3)
2

则有f(n)=
(4+n)(n?3)
2
+f(3)=
(4+n)(n?3)
2
+7
=
n2+n+2
2

故答案为16;
n2+n+2
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式