线性代数,计算行列式
2个回答
展开全部
不是范德蒙行列式。后 3 列分别减去第 1 列, 得 D =
|1 0 0 0|
|a1 a2-a1 a3-a1 a4-a1|
|(a1)^2 (a2)^2-(a1)^2 (a3)^2-(a1)^2 (a4)^2-(a1)^2|
|(a1)^4 (a2)^4-(a1)^4 (a3)^4-(a1)^4 (a4)^4-(a1)^4|
D =
|a2-a1 a3-a1 a4-a1|
|(a2)^2-(a1)^2 (a3)^2-(a1)^2 (a4)^2-(a1)^2|
|(a2)^4-(a1)^4 (a3)^4-(a1)^4 (a4)^4-(a1)^4|
D = (a2-a1)(a3-a1)(a4-a1)*
|1 1 1|
|a2+a1 a3+a1 a4+a1|
|[(a2)^2+(a1)^2](a2+a1) [(a3)^2+(a1)^2](a3+a1) [(a4)^2+(a1)^2](a4+a1)|
D = (a2-a1)(a3-a1)(a4-a1)*
|1 0 0|
|a2+a1 a3-a2 a4-a2|
|[(a2)^2+(a1)^2](a2+a1) (a3-a2)x (a4-a2)y|
其中:x = (a1)^2+(a2)^2+(a3)^2+a1a2+a1a3+a2a3
y = (a1)^2+(a2)^2+(a4)^2+a1a2+a1a4+a2a4
则 D = (a2-a1)(a3-a1)(a4-a1)(a3-a2)(a4-a2)(y-x)
= (a2-a1)(a3-a1)(a4-a1)(a3-a2)(a4-a2)(a4-a3)(a1+a2+a3+a4)
|1 0 0 0|
|a1 a2-a1 a3-a1 a4-a1|
|(a1)^2 (a2)^2-(a1)^2 (a3)^2-(a1)^2 (a4)^2-(a1)^2|
|(a1)^4 (a2)^4-(a1)^4 (a3)^4-(a1)^4 (a4)^4-(a1)^4|
D =
|a2-a1 a3-a1 a4-a1|
|(a2)^2-(a1)^2 (a3)^2-(a1)^2 (a4)^2-(a1)^2|
|(a2)^4-(a1)^4 (a3)^4-(a1)^4 (a4)^4-(a1)^4|
D = (a2-a1)(a3-a1)(a4-a1)*
|1 1 1|
|a2+a1 a3+a1 a4+a1|
|[(a2)^2+(a1)^2](a2+a1) [(a3)^2+(a1)^2](a3+a1) [(a4)^2+(a1)^2](a4+a1)|
D = (a2-a1)(a3-a1)(a4-a1)*
|1 0 0|
|a2+a1 a3-a2 a4-a2|
|[(a2)^2+(a1)^2](a2+a1) (a3-a2)x (a4-a2)y|
其中:x = (a1)^2+(a2)^2+(a3)^2+a1a2+a1a3+a2a3
y = (a1)^2+(a2)^2+(a4)^2+a1a2+a1a4+a2a4
则 D = (a2-a1)(a3-a1)(a4-a1)(a3-a2)(a4-a2)(y-x)
= (a2-a1)(a3-a1)(a4-a1)(a3-a2)(a4-a2)(a4-a3)(a1+a2+a3+a4)
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询