lim(x趋于∞)(x^2-5x+1/x^2-2x+3)^2x+1次幂的极限怎么求
1个回答
展开全部
lim(x -> ∞)(x^2-5x+1/x^2-2x+3)^(2x+1)
= lim(x -> ∞)e^ (2x+1)ln(x^2-5x+1/x^2-2x+3)
= lim(x -> ∞)e^ [(2x+1)((x^2-5x+1/x^2-2x+3) - 1)] (Taylor expansion: ln x ~ x - 1
= lim(x -> ∞)e^[(2x+1)(-3x)/(x^2)] (after ignoring lower degree terms)
= e^(-6)
= lim(x -> ∞)e^ (2x+1)ln(x^2-5x+1/x^2-2x+3)
= lim(x -> ∞)e^ [(2x+1)((x^2-5x+1/x^2-2x+3) - 1)] (Taylor expansion: ln x ~ x - 1
= lim(x -> ∞)e^[(2x+1)(-3x)/(x^2)] (after ignoring lower degree terms)
= e^(-6)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询