展开全部
哈哈,我们又见面了。
解题方法如下
证明:在BC上截取CE=AC(E在BC上)
∵CD平分∠ACB
∴∠BCD=∠ACD
在△DEC和△DAC中
∵DC=DC
∠BCD=∠ACD
EC=AC
∴△DEC全等于△DAC(SAS)
∴∠DEC=∠DAC,DE=DA
在△DBE中
∵∠DEC=∠B+∠EDB
又∵∠A=2∠B
∴∠DEC=2∠B
∴∠B=∠EDB
∴△DBE为等边△
∴DE=BE=AD
∴BC=BE+EC
∴BC=AD+AC
呵呵,写完了,楼主看懂了么?
解题方法如下
证明:在BC上截取CE=AC(E在BC上)
∵CD平分∠ACB
∴∠BCD=∠ACD
在△DEC和△DAC中
∵DC=DC
∠BCD=∠ACD
EC=AC
∴△DEC全等于△DAC(SAS)
∴∠DEC=∠DAC,DE=DA
在△DBE中
∵∠DEC=∠B+∠EDB
又∵∠A=2∠B
∴∠DEC=2∠B
∴∠B=∠EDB
∴△DBE为等边△
∴DE=BE=AD
∴BC=BE+EC
∴BC=AD+AC
呵呵,写完了,楼主看懂了么?
展开全部
在BC上截取CE等于CA然后连接DE又通过SAS定律证明DE等于DA则因为∠DEC等于∠A等于2∠B则根据外角原理∠DEC=∠B+∠BDE又已知∠DEC为2∠B则根据等角对等边课的BE=DE=AD所以可得结论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-08-23
展开全部
在BC上截取CE=AC(E在BC上)
∵CD平分∠ACB
∴∠BCD=∠ACD
在△DEC和△DAC中
∵DC=DC
∠BCD=∠ACD
EC=AC
∴△DEC全等于△DAC(SAS)
∴∠DEC=∠DAC,DE=DA
在△DBE中
∵∠DEC=∠B+∠EDB
又∵∠A=2∠B
∴∠DEC=2∠B
∴∠B=∠EDB
∴△DBE为等边△
∴DE=BE=AD
∴BC=BE+EC
∴BC=AD+AC
∵CD平分∠ACB
∴∠BCD=∠ACD
在△DEC和△DAC中
∵DC=DC
∠BCD=∠ACD
EC=AC
∴△DEC全等于△DAC(SAS)
∴∠DEC=∠DAC,DE=DA
在△DBE中
∵∠DEC=∠B+∠EDB
又∵∠A=2∠B
∴∠DEC=2∠B
∴∠B=∠EDB
∴△DBE为等边△
∴DE=BE=AD
∴BC=BE+EC
∴BC=AD+AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在BC边上找一点E,使AC=EC,则△ACD≌△ECD,那么角A=角CED,ED=AD.角CED是△BED的外角,角CED=2角B,又角A=角CED=2角B。所以角B=角EDB。所以BE=ED=AD.所以BE+EC=AD+AC=BC原题得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询