焊缝和热影响区性能最差的是
2个回答
展开全部
焊接热影响区就是指在焊接过程中,母材因受热影响但未熔化而发生金相组织和力学性能变化的区域。焊接热影响区的组织和性能基本上反映了焊接接头的性能和质量。对于低碳钢及合金元素较少的低合金钢高强度结构钢等不易淬火钢,焊接热影响区可分为:过热区、正火区、不完全重结晶区和再结晶区。
过热区
焊接热影响区中,具有过热组织或晶粒显著粗大的区域称为过热区,又称粗晶区。过热区的加热温度是在固相线到1100℃左右之间。在这样高的温度下,奥氏体晶粒严重长大,冷却后显现为龙经理粗大的过热组织,甚至出现魏氏体组织。过热区塑性、韧性很低,尤其是冲击韧性比母材低20~30%,是热影响区中最弱的区域。
正火区
正火区的加热温度范围约在Ac3~1100℃之间。焊接时该区域的铁素体和珠光体全部转变为奥氏体。由于温度不高,晶粒长大较慢,空冷后获得均匀细小的铁素体和珠光体,相当于热处理时的正火组织。因此,该区也称为相变重结晶区或细晶区。其力学性能略高于母材,是热影响区中宗和力学性能最好的区域。
不完全重结晶区
不完全重结晶区的加热范围处于AC1~AC3之间,焊接时该区部分铁素体和珠光体转变为奥氏体,冷却时奥氏体转变为细小的铁素体和珠光体;而未溶入奥氏体的铁素体不发生转变,晶粒长大粗化,成为粗大的铁素体。所以这个区域的金属组织是不均匀的,一部分是经过重结晶的晶粒细小的铁素体和珠光体;另一部分是粗大的铁素体。由于晶粒大小不同,所以力学性能也不均匀。
再结晶区
对于焊前经过冷塑性变形的母材,如冷轧、冷成形等,加热温度在Ac1~450℃之间的区域,将发生再结晶。经过再结晶,焊缝的塑性和韧性得到提高;而强度却有所降低。
过热区
焊接热影响区中,具有过热组织或晶粒显著粗大的区域称为过热区,又称粗晶区。过热区的加热温度是在固相线到1100℃左右之间。在这样高的温度下,奥氏体晶粒严重长大,冷却后显现为龙经理粗大的过热组织,甚至出现魏氏体组织。过热区塑性、韧性很低,尤其是冲击韧性比母材低20~30%,是热影响区中最弱的区域。
正火区
正火区的加热温度范围约在Ac3~1100℃之间。焊接时该区域的铁素体和珠光体全部转变为奥氏体。由于温度不高,晶粒长大较慢,空冷后获得均匀细小的铁素体和珠光体,相当于热处理时的正火组织。因此,该区也称为相变重结晶区或细晶区。其力学性能略高于母材,是热影响区中宗和力学性能最好的区域。
不完全重结晶区
不完全重结晶区的加热范围处于AC1~AC3之间,焊接时该区部分铁素体和珠光体转变为奥氏体,冷却时奥氏体转变为细小的铁素体和珠光体;而未溶入奥氏体的铁素体不发生转变,晶粒长大粗化,成为粗大的铁素体。所以这个区域的金属组织是不均匀的,一部分是经过重结晶的晶粒细小的铁素体和珠光体;另一部分是粗大的铁素体。由于晶粒大小不同,所以力学性能也不均匀。
再结晶区
对于焊前经过冷塑性变形的母材,如冷轧、冷成形等,加热温度在Ac1~450℃之间的区域,将发生再结晶。经过再结晶,焊缝的塑性和韧性得到提高;而强度却有所降低。
展开全部
焊接热影响区的硬化
焊接热影响区的硬度主要决定于被焊钢种的化学成分和冷却条件,其实质是反应不同金相组织的性能。由于硬度试验比较方便,因此,常用热影响区(一般在熔合区)的最高硬度Hmax判断热影响区的性能,它可以间接预测热影响区的韧性、脆性和抗裂性等。近年来,尾巴HAZ的Hmax作为评定焊接性的重要标志。应当指出,即使同一组织,也有不同的硬度。这与钢的含碳量、合金成分及冷却条件有关。
02
焊接热影响区的脆化
焊接热影响区的脆化常常是引起焊接接头开裂和脆性破坏的主要原因。目前其脆化的形式有粗晶脆化、析出脆化、组织转变脆化、热应变时效脆化、氢脆以及石墨脆化等。
① 粗晶脆化。在热循环的作用下,焊接接头的熔合线附近和过热区将发生晶粒粗化。晶粒粗大严重影响组织的脆性。一般来讲,晶粒越粗,则脆性转变温度越高。
② 析出脆化。在时效或回火过程中,其过饱和固溶体中将析出碳化物、氮化物、金属间化合物及其他亚稳定的中间相等。由于这些新相的析出,使金属或合金的强度、硬度和脆性提高,这种现象称为析出脆化。
③ 组织脆化。焊接HAZ中由于出现脆硬组织而产生的脆化称为组织脆化。对于常用的低碳低合金高强钢,焊接HAZ的组织脆化主要是M-A组元、上贝氏体、粗大的魏氏组织等造成的。但对含碳量较高的钢(一般≥0.2%),则组织脆化主要是由高碳马氏体引起的。
④ HAZ的热应变时效脆化。在制造过程中要对焊接结构进行加工,如下料、剪切、冷变成型、气割、焊接和其他热加工等。由这些加工引起的局部应变、塑性变形对焊接HAZ脆化有很大的影响,由此而引起的脆化称为热应变时效脆化。应变时效脆化大体上可分为静应变时效脆化和动应变时效脆化两类。通常说的“蓝脆性”就属于动应变时效现象。
03
焊接HAZ的韧化
焊接HAZ在组织和性能上是一个非均匀体,特别是熔合区和粗晶区易产生脆化,是整个焊接接头的薄弱地带。因此,应采取措施提高焊接HAZ的韧性。根据研究,HAZ的韧化可采用以下两方面的措施。
① 控制组织。对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系。这样,在焊接的冷却条件下,
焊接热影响区的硬度主要决定于被焊钢种的化学成分和冷却条件,其实质是反应不同金相组织的性能。由于硬度试验比较方便,因此,常用热影响区(一般在熔合区)的最高硬度Hmax判断热影响区的性能,它可以间接预测热影响区的韧性、脆性和抗裂性等。近年来,尾巴HAZ的Hmax作为评定焊接性的重要标志。应当指出,即使同一组织,也有不同的硬度。这与钢的含碳量、合金成分及冷却条件有关。
02
焊接热影响区的脆化
焊接热影响区的脆化常常是引起焊接接头开裂和脆性破坏的主要原因。目前其脆化的形式有粗晶脆化、析出脆化、组织转变脆化、热应变时效脆化、氢脆以及石墨脆化等。
① 粗晶脆化。在热循环的作用下,焊接接头的熔合线附近和过热区将发生晶粒粗化。晶粒粗大严重影响组织的脆性。一般来讲,晶粒越粗,则脆性转变温度越高。
② 析出脆化。在时效或回火过程中,其过饱和固溶体中将析出碳化物、氮化物、金属间化合物及其他亚稳定的中间相等。由于这些新相的析出,使金属或合金的强度、硬度和脆性提高,这种现象称为析出脆化。
③ 组织脆化。焊接HAZ中由于出现脆硬组织而产生的脆化称为组织脆化。对于常用的低碳低合金高强钢,焊接HAZ的组织脆化主要是M-A组元、上贝氏体、粗大的魏氏组织等造成的。但对含碳量较高的钢(一般≥0.2%),则组织脆化主要是由高碳马氏体引起的。
④ HAZ的热应变时效脆化。在制造过程中要对焊接结构进行加工,如下料、剪切、冷变成型、气割、焊接和其他热加工等。由这些加工引起的局部应变、塑性变形对焊接HAZ脆化有很大的影响,由此而引起的脆化称为热应变时效脆化。应变时效脆化大体上可分为静应变时效脆化和动应变时效脆化两类。通常说的“蓝脆性”就属于动应变时效现象。
03
焊接HAZ的韧化
焊接HAZ在组织和性能上是一个非均匀体,特别是熔合区和粗晶区易产生脆化,是整个焊接接头的薄弱地带。因此,应采取措施提高焊接HAZ的韧性。根据研究,HAZ的韧化可采用以下两方面的措施。
① 控制组织。对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系。这样,在焊接的冷却条件下,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询