如何计算双重积分?
3个回答
展开全部
双重积分的积分区域在一个平面上:
.直角投影法:分别在x轴和y轴上投影。先确定x的取值范围,然后从x的坐标区域做一条垂线交于曲线,分别得到y1(x)和y2(x);这种积分先对x积分,再对y积分;先确定y的取值范围,然后从y的坐标区域做一条垂线交于曲线,分别得到x1(y)和态悉丛x2(y),这种积分先对y积分,再对x积分。
1.极坐标法:当积分区域或被积函数含有x∧2+y∧2时,使用极坐标法。
2.首先确定θ和r的取值范围,r的取值范围可以用x=rcosθ,y=rsinθ代入积分区域的函数得到,或者直接从积分区域陆谈观察出来;将x=rcosθ,y=rsin代入被积函数,dxdy=rdrdθ,积分式中前面写对θ的积分,后面写对r的积分帆樱。
.直角投影法:分别在x轴和y轴上投影。先确定x的取值范围,然后从x的坐标区域做一条垂线交于曲线,分别得到y1(x)和y2(x);这种积分先对x积分,再对y积分;先确定y的取值范围,然后从y的坐标区域做一条垂线交于曲线,分别得到x1(y)和态悉丛x2(y),这种积分先对y积分,再对x积分。
1.极坐标法:当积分区域或被积函数含有x∧2+y∧2时,使用极坐标法。
2.首先确定θ和r的取值范围,r的取值范围可以用x=rcosθ,y=rsinθ代入积分区域的函数得到,或者直接从积分区域陆谈观察出来;将x=rcosθ,y=rsin代入被积函数,dxdy=rdrdθ,积分式中前面写对θ的积分,后面写对r的积分帆樱。
展开全部
二重积分化为二次积分计算,二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
二重积分是二元函数在空间上的积分,是某种特定形式的和的极限。本质是求曲顶柱体体积。 同定积分类似。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。备橡
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域,并以表示第个子域的面积。在上任取一点作和。如果当各个子域的直径中的最大值趋于零时,此和式的极限存在,且派竖该极限值与区域D的分法及的取法无关,则称此极限为函数在区域上的二重积分,记为,即。
这时,称在上可积,其中称被积函数,称为被积表达式,尘滚大称为面积元素,称为积分区域,称为二重积分号。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
二重积分是二元函数在空间上的积分,是某种特定形式的和的极限。本质是求曲顶柱体体积。 同定积分类似。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。备橡
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域,并以表示第个子域的面积。在上任取一点作和。如果当各个子域的直径中的最大值趋于零时,此和式的极限存在,且派竖该极限值与区域D的分法及的取法无关,则称此极限为函数在区域上的二重积分,记为,即。
这时,称在上可积,其中称被积函数,称为被积表达式,尘滚大称为面积元素,称为积分区域,称为二重积分号。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二重积分化为二次积分计算,二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为备橡在高维空间中的(有向)曲面上进尘滚大行积分,称为曲面积分。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平派竖面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |