如何解二次齐次微分方程?

 我来答
夫越Zb

2022-08-22 · TA获得超过5425个赞
知道大有可为答主
回答量:6441
采纳率:100%
帮助的人:112万
展开全部
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)
第二步:通解
1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
2、若r1=r2,则y=(C1+C2x)*e^(r1*x)
3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)
2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)
3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。
最后结果就是y=通解+特解。
通解的系数C1,C2是任意常数。
拓展资料:

微分方程

微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。

高数常用微分表

唯一性

存在定一微 分程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
十全秀才95
2023-07-25 · TA获得超过432个赞
知道大有可为答主
回答量:7615
采纳率:94%
帮助的人:250万
展开全部
解:大部分二阶微分方程没有通解,只有特殊形式的二阶微分方程有通解。
解微分方程为xy"+(x+4)y'+3y=4x+4,假设微分方程xy"+(x+4)y'+3y=0的特解为y=xʳ,将特解带入方程,有x(xʳ)"+(x+4)(xʳ)'+3xʳ=0,r(r-1)xʳ⁻¹+r(x+4)xʳ⁻¹+3xʳ=0,r(r-1)xʳ⁻¹+4rxʳ⁻¹+rxʳ+3xʳ=0,(r²+3r)+(r+3)x=0,(r+3)(r+x)=0,得:r=-3,则微分方程xy"+(x+4)y'+3y=0的特解为y=x⁻³,再设微分方程的通解为y=x⁻³u,有x(x⁻³u)"+(x+4)(x⁻³u)'+3x⁻³u=0,x(x⁻³u"-3x⁻⁴u'-3x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x(x⁻³u"-6x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x²u"-6xu'+12u+(x+4)(xu'-3u)+3xu=0,x²u"+(x²-2x)u'=0,u"×eˣ/x²+eˣ(1/x²-2/x³)u'=0,(u'eˣ/x²)'=0,u'eˣ/x²=a(a为任意常数),u'=ax²e⁻ˣ,u=-ax²e⁻ˣ-2axe⁻ˣ-2ae⁻ˣ+c(为任意常数),微分方程xy"+(x+4)y'+3y=0的通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³(c为任意常数);设原微分方程的特解为y=px+q,有p(x+4)+3(px+q)=4x+4,4px+4p+3q=4x+4,有4p=4,4p+3q=4,得:p=1,q=0,微分方程的特解为y=x,通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³+x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式