n元齐次线性方程组ax=0有非零解的充要条件是什么?

 我来答
鲨鱼星小游戏
高粉答主

2022-02-21 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238354

向TA提问 私信TA
展开全部

齐次线性方程组AX=0有非零解的充要条件是:r(A)<n,即系数矩阵A的秩小于未知量的个数。

由此可得推论:齐次线性方程组AX=0仅有零解的充要条件是r(A)=n。

1、若n个方程n个未知量构成的齐次线性方程组AX=0的系数行列式|A|≠0,则方程组有唯一零解。

2、若m个方程n个未知量构成的齐次线性方程组,若r(A)= n,即A的列向量组线性无关,则方程组有唯一零解;若r(A)= s<n,即A的列向量组线性相关,则方程组有有非零解,且有n-s个线性无关解。

相关流程:

1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵

2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束。

若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤。

3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组。

4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

富港检测技术(东莞)有限公司_
2024-04-02 广告
R(A)若为n,则只有唯一零解若R(A)&lt;n,则有无穷多组解。讨论|A|是没有意义的,因为行列式必须是行数与列数相等,而n元齐次方程组的系数构成的矩阵不一定能对应一个行列式。对于齐次线性方程组,它总是有解的(零解)所以它有唯一解的等价... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式