证明:如果正交矩阵有实特征值,则其特征值只能是1或-1.

考试资料网
2023-04-18 · 百度认证:赞题库官方账号
考试资料网
向TA提问
展开全部
【答案】:设A的实特征值为λ,A的属于λ的特征向量为考,则Aξ=λξ,且ξTξ≠0.
∵A为正交矩阵,ATA=E.由(Aξ)T(Aξ)=(λξ)T(λξ),即ξT(ATA)ξ=λ2ξTξ,
ξTξ=λ2ξT,∵λ2=1,λ∈R,即λ=±1. 故正交矩阵的实特征值只能是-1或1.
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式