几阶无穷小怎么看
根据常数所对应的阶数就可以看出是几阶无穷小。
设这个函数是f(x),则计算极限lim(x->0) f(x)/x^n,如果当n=p-1时,极限值=0。当n=p时,极限值=常数,则可以判断,f(x)是x^p的同阶无穷小,当这个常数=1时,f(x)是x^p的等价无穷小。根据常数所对应的阶数就可以看出是几阶无穷小。
无穷小量是极限为0的变量而不是数量0,是指自变量在一定变动方式下其极限为数量0,称一个函数是无穷小量,一定要说明自变量的变化趋势。例如 在 时是无穷小量,而不能笼统说 是无穷小量。也不能说无穷小是 ,是指负无穷大。
无穷小量通常用小写希腊字母表示,如α、β、ε等,有时候也用α(x)、ο(x)等,表示无穷小量是以x为自变量的函数。
阶数简介:
阶数,数学术语,代表正方形矩阵的大小。与其较为相关的矩阵的"秩"定义为一个矩阵中不等于0的子式的最大阶数。但需要注意的是这里的"子式"是指行列式。一个m行n列的矩阵简称为m*n矩阵,特别把一个n*n的矩阵成为n阶正方阵,或者n阶矩阵。此外,行列式的阶数与矩阵类似,但是行列式必然为一个正方阵。
举例:一个2维数组各元素输出后成魔方阵。在制定这样魔方阵的2维数组时要求是:阶数是1到15之间的奇数。 在此中的阶数举例如3阶就是3*3的魔方阵,5阶就是5*5的魔方阵,也就是二维数组两个维度的长度。