一道高二数列问题。

设数列{an}的前n项和为Sn,已知b*an-2^n=(b-1)Sn求证:当b=2时,{an-n*2^(n-1)}是等比数列解析:由题意得,a1=2,且b*an-2^n=... 设 数列{an}的前n项和为Sn,已知b*an - 2^n=(b-1)Sn
求证:当b=2时,{an-n*2^(n-1) } 是等比数列

解析:由题意得,a1=2,且b*an-2^n=(b-1)Sn,
b*an+1 - 2^(n+1) =(b - 1) Sn+1, 两式相减得
b(an+1 - n*2^(n-1) ) - 2^n = (b-1)*an+ 1

主要是这边不知道:为什么 b*an-2^n=(b-1)Sn 减去 b*an+1 - 2^(n+1) =(b - 1) Sn+1
会等于b(an+1 - n*2^(n-1) ) - 2^n = (b-1)*an+ 1 主要是不知道为什么那边的
2^(n+1) - 2^n 会等于 -2^n
展开
snyhs
2010-08-27 · TA获得超过9655个赞
知道大有可为答主
回答量:2150
采纳率:100%
帮助的人:994万
展开全部
2^(n+1) - 2^n
=2*2^n - 2^n
=2^n

b*an-2^n=(b-1)Sn,
b*a(n+1)- 2^(n+1)=(b-1)S(n+1)
两梁岁式相减(左-左=右橡做睁-右胡腊):
[b*a(n+1)- 2^(n+1)]-[b*an-2^n]=[(b-1)S(n+1)]-[(b-1)Sn]
[b*a(n+1)-b*an]-[2^(n+1)-2^n]=(b-1)[S(n+1)-Sn]
ba(n+1)-ban-2^n=(b-1)a(n+1)
a(n+1)-ban-2^n=0
1120918198
2010-08-27 · TA获得超过379个赞
知道小有建树答主
回答量:195
采纳率:0%
帮助的人:133万
展开全部
我觉得相减得到的b(an+1 - n*2^(n-1) ) - 2^n = (b-1)*an+ 1似乎算得不对
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式