三角形ABC中,求证sin²A/2+sin²B/2+sin²C/2=1-2sinA/2*sinB/2*sinC/2
1个回答
展开全部
证明:∵cosA+cosB+cosC
=2cos[(A+B)/2]cos[(A-B)/2]+1-2sin²(C/2)
=2sin(C/2)cos[(A-B)/2]+1-2sin²(C/2)
=1+2sin(C/2){cos[(A-B)/2]-sin(C/2)}
=1+2sin(C/2){cos[(A-B)/2]-cos[(A+B)/2]}
=1+2sin(C/2)×2sin(A/2)sin(B/2)
=1+4sin(A/2)sin(B/2)sin(C/2)
又∵cosA+cosB+cosC
=1-2sin²(A/2)+1-2sin²(B/2)+1-2sin²(C/2)
=3-2[sin²(A/2)+sin²(B/2)+sin²(C/2)]
∴1+4sin(A/2)sin(B/2)sin(C/2)
=3-2[sin²(A/2)+sin²(B/2)+sin²(C/2)]
整理即得:
sin²(A/2)+sin²(B/2)+sin²(C/2)=1-2sin(A/2)sin(B/2)sin(C/2)
=2cos[(A+B)/2]cos[(A-B)/2]+1-2sin²(C/2)
=2sin(C/2)cos[(A-B)/2]+1-2sin²(C/2)
=1+2sin(C/2){cos[(A-B)/2]-sin(C/2)}
=1+2sin(C/2){cos[(A-B)/2]-cos[(A+B)/2]}
=1+2sin(C/2)×2sin(A/2)sin(B/2)
=1+4sin(A/2)sin(B/2)sin(C/2)
又∵cosA+cosB+cosC
=1-2sin²(A/2)+1-2sin²(B/2)+1-2sin²(C/2)
=3-2[sin²(A/2)+sin²(B/2)+sin²(C/2)]
∴1+4sin(A/2)sin(B/2)sin(C/2)
=3-2[sin²(A/2)+sin²(B/2)+sin²(C/2)]
整理即得:
sin²(A/2)+sin²(B/2)+sin²(C/2)=1-2sin(A/2)sin(B/2)sin(C/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询