在三角形ABC中,A+B+C=180°求证sin^2A+2sinBsinCcosA=sin^2B+sin^2C
1个回答
展开全部
证明:
∵A+B+C=180°,
∴sinA=sin(B+C)=sinBcosC+cosBsinC,
cosA=-cos(B+C)=-(cosBcosC-sinBsinC)
sin²A+2sinBsinCcosA
=(sinBcosC+cosBsinC)²-2sinBsinC(cosBcosC-sinBsinC)
=sin²Bcos²C+cos²Bsin²C+2sinBsinCcosBcosC-2sinBsinCcosBcosC+2sin²Bsin²C
=sin²Bcos²C+cos²Bsin²C+2sin²Bsin²C
=sin²B(cos²C+sin²C)+sin²C(cos²B+sin²B)
=sin²B+sin²C
∵A+B+C=180°,
∴sinA=sin(B+C)=sinBcosC+cosBsinC,
cosA=-cos(B+C)=-(cosBcosC-sinBsinC)
sin²A+2sinBsinCcosA
=(sinBcosC+cosBsinC)²-2sinBsinC(cosBcosC-sinBsinC)
=sin²Bcos²C+cos²Bsin²C+2sinBsinCcosBcosC-2sinBsinCcosBcosC+2sin²Bsin²C
=sin²Bcos²C+cos²Bsin²C+2sin²Bsin²C
=sin²B(cos²C+sin²C)+sin²C(cos²B+sin²B)
=sin²B+sin²C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询