1个回答
展开全部
a(n) = a + (n-1)d,
a = a(1) < a(2) = a + d, d>0.
b(n) = bq^(n-1) = [a(n)]^2 >=0.
b = b(1) < b(2) = bq, b>0, q>1.
b = b(1) = [a(1)]^2 = a^2,
b(n) = a^2q^(n-1).
b(2) = a^2q = [a(2)]^2 = [a+d]^2, q = [1 + d/a]^2.
b(n) = a^2[1+d/a]^(2n-2)
b(3) = a^2[1+d/a]^4 = [a(3)]^2 = [a+2d]^2,
[1+d/a]^4 = [1+2d/a]^2,
0 = [(1+d/a)^2 - (1+2d/a)][(1+d/a)^2 + (1+2d/a)]
= [1 + 2d/a + (d/a)^2 - 1 - 2d/a][1+2d/a + (d/a)^2 + 1 + 2d/a]
= (d/a)^2[(d/a)^2 +4d/a + 2],
0 = (d/a)^2 + 4(d/a) + 4 - 2 = [d/a+2]^2 - 2 = [d/a+2+2^(1/2)][d/a+2-2^(1/2)],
0 = d/a + 2 + 2^(1/2)或0 = d/a + 2-2^(1/2).
q = [1+d/a]^2 = [1+2^(1/2)]^2 = 3 + 2^(3/2),
或
q = [1+d/a]^2 = [1-2^(1/2)]^2 = 3 - 2^(3/2)<1(舍去)
因此,只能,
q = 3 + 2^(3/2).
a = a(1) < a(2) = a + d, d>0.
b(n) = bq^(n-1) = [a(n)]^2 >=0.
b = b(1) < b(2) = bq, b>0, q>1.
b = b(1) = [a(1)]^2 = a^2,
b(n) = a^2q^(n-1).
b(2) = a^2q = [a(2)]^2 = [a+d]^2, q = [1 + d/a]^2.
b(n) = a^2[1+d/a]^(2n-2)
b(3) = a^2[1+d/a]^4 = [a(3)]^2 = [a+2d]^2,
[1+d/a]^4 = [1+2d/a]^2,
0 = [(1+d/a)^2 - (1+2d/a)][(1+d/a)^2 + (1+2d/a)]
= [1 + 2d/a + (d/a)^2 - 1 - 2d/a][1+2d/a + (d/a)^2 + 1 + 2d/a]
= (d/a)^2[(d/a)^2 +4d/a + 2],
0 = (d/a)^2 + 4(d/a) + 4 - 2 = [d/a+2]^2 - 2 = [d/a+2+2^(1/2)][d/a+2-2^(1/2)],
0 = d/a + 2 + 2^(1/2)或0 = d/a + 2-2^(1/2).
q = [1+d/a]^2 = [1+2^(1/2)]^2 = 3 + 2^(3/2),
或
q = [1+d/a]^2 = [1-2^(1/2)]^2 = 3 - 2^(3/2)<1(舍去)
因此,只能,
q = 3 + 2^(3/2).
追问
4b3=a3^2
追答
我明天给你做可以么?宿舍要断电了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询