已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.(Ⅰ)求数列{an}的通项公式
已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若等差数列{bn}的通项公式为b...
已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若等差数列{bn}的通项公式为bn=n,求Sn=a1bn+a2bn-1+…+anb1.
展开
1个回答
展开全部
(Ⅰ)∵{an}为递增的等比数列,
∴数列{an}的公比是正数,
又{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16},
∴a1=1,a3=4,a5=16,
从而q2=
=4,解得q=2,an=a1qn?1=2n-1,
∴an=2n?1.
(Ⅱ)∵等差数列{bn}的通项公式为bn=n,
Sn=a1bn+a2bn-1+…+anb1.
∴Sn=1×n+2(n-1)+22(n-2)+23(n-3)+…+2n-2×2+2n-1×1,①
2Sn=2n+22(n-2)+23(n-2)+…+2n-1×2+2n×1,
②-①,得:
Sn=-n+2+22+23+…+2n-1+2n
=-n+
=2n+1-n-2.
∴数列{an}的公比是正数,
又{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16},
∴a1=1,a3=4,a5=16,
从而q2=
a5 |
a3 |
∴an=2n?1.
(Ⅱ)∵等差数列{bn}的通项公式为bn=n,
Sn=a1bn+a2bn-1+…+anb1.
∴Sn=1×n+2(n-1)+22(n-2)+23(n-3)+…+2n-2×2+2n-1×1,①
2Sn=2n+22(n-2)+23(n-2)+…+2n-1×2+2n×1,
②-①,得:
Sn=-n+2+22+23+…+2n-1+2n
=-n+
2(1?2n) |
1?2 |
=2n+1-n-2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询