设f(x)是[0,+无穷)上的连续可微函数,且当x趋向于+∞时,f(x)递减的趋于0,证明:若∫
设f(x)是[0,+无穷)上的连续可微函数,且当x趋向于+∞时,f(x)递减的趋于0,证明:若∫设f(x)是[0,+无穷)上的连续可微函数,且当x趋向于+∞时,f(x)递...
设f(x)是[0,+无穷)上的连续可微函数,且当x趋向于+∞时,f(x)递减的趋于0,证明:若∫设f(x)是[0,+无穷)上的连续可微函数,且当x趋向于 +∞ 时,f(x)递减的趋于0,证明:若∫xf(x)dx收敛,则∫f(x)dx收敛。积分范围从0到+∞
展开
展开全部
分析:从结果看,f'(ξ)=2/(2ξ+1) - 1/√(1+ξ²)
显然:[ln(2ξ+1)]' =2/(2ξ+1)
而ln(2ξ+1)形式和0≤f(x)≤ln(2x+1)/[x+√(1+x²)]中的相近,再进一步:
ln[x+√(1+x²)]的导数为:1/√√(1+x²),至此,可以利用构造法!
令:F(x)=f(x)-ln(2x+1)/[x+√(1+x²)]
显然,F(x)在[0,+∞)可微,
再令:t∈(0,+∞),则:
F(x)在F(x)在(0,t)可微,即可导,在[0,t]连续
因此,根据拉格朗日中值定理,∃ξ∈(0,t)⊂(0,+∞),则:
[F(t)-F(0)]/t = F'(ξ)
F(0)=f(0)-ln1=f(0)
又∵0≤f(x)≤ln(2x+1)/[x+√(1+x²)]
则:0≤f(0)≤ln1=0
即:f(0)=0
∴F(0)=0
F(t)=f(t)-ln(2t+1)/[t+√(1+t²)]
根据:0≤f(x)≤ln(2x+1)/[x+√(1+x²)]可得:
0≤f(t)-ln(2t+1)/[t+√(1+t²)]≤ln(2t+1)/[t+√(1+t²)] - ln(2t+1)/[t+√(1+t²)]=0
即:
F(t)=f(t)-ln(2t+1)/[t+√(1+t²)]=0
而:
F'(ξ) = {f(ξ)-ln(2ξ+1)/[ξ+√(1+ξ²)]}'
因此:
(0-0)/t ={f(ξ)-ln(2ξ+1)/[ξ+√(1+ξ²)]}'
∴
f'(ξ) = 2/(2ξ+1) - 1/√(1+ξ²)
显然:[ln(2ξ+1)]' =2/(2ξ+1)
而ln(2ξ+1)形式和0≤f(x)≤ln(2x+1)/[x+√(1+x²)]中的相近,再进一步:
ln[x+√(1+x²)]的导数为:1/√√(1+x²),至此,可以利用构造法!
令:F(x)=f(x)-ln(2x+1)/[x+√(1+x²)]
显然,F(x)在[0,+∞)可微,
再令:t∈(0,+∞),则:
F(x)在F(x)在(0,t)可微,即可导,在[0,t]连续
因此,根据拉格朗日中值定理,∃ξ∈(0,t)⊂(0,+∞),则:
[F(t)-F(0)]/t = F'(ξ)
F(0)=f(0)-ln1=f(0)
又∵0≤f(x)≤ln(2x+1)/[x+√(1+x²)]
则:0≤f(0)≤ln1=0
即:f(0)=0
∴F(0)=0
F(t)=f(t)-ln(2t+1)/[t+√(1+t²)]
根据:0≤f(x)≤ln(2x+1)/[x+√(1+x²)]可得:
0≤f(t)-ln(2t+1)/[t+√(1+t²)]≤ln(2t+1)/[t+√(1+t²)] - ln(2t+1)/[t+√(1+t²)]=0
即:
F(t)=f(t)-ln(2t+1)/[t+√(1+t²)]=0
而:
F'(ξ) = {f(ξ)-ln(2ξ+1)/[ξ+√(1+ξ²)]}'
因此:
(0-0)/t ={f(ξ)-ln(2ξ+1)/[ξ+√(1+ξ²)]}'
∴
f'(ξ) = 2/(2ξ+1) - 1/√(1+ξ²)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询