设f(x)在去区间(-l,l)上为奇函数且可导,求证:在区间(-l,l)上f'(x)为偶函数。谢谢

 我来答
轮看殊O
高粉答主

2021-09-13 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:738万
展开全部

证明如下:


1、由于f(x)为奇函数,则f(0)=0,由于f(x)在[-1,1]上具有二阶导数,由拉格朗日定理,存在ξ∈(0,1),使得f′(ξ)=f(1)−f(0)  /  1−0   =1


2、由于f(x)为奇函数,则f'(x)为偶函数,由(1)可知存在ξ∈(0,1),使得f'(ξ)=1,且f'(-ξ)=1,


令φ(x)=f'(x)+f(x),由条件显然可知在φ(x)在[-1,1]上可导,由拉格朗日中值定理可知,存在η∈(-1,1),使得φ(1)−φ(−1)  / 1−(−1)    =φ′(η)成立;


φ(1)-φ(-1)=f'(1)+f(1)-f'(-1)-f(-1)=2f(1)=2,从而φ'(η)=1成立,即f''(η)+f'(η)=1

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数


函数可导的条件:


如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。


可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

善解人意一
高粉答主

2018-01-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.6万
采纳率:83%
帮助的人:7464万
展开全部


供参考。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式