极限的等价无穷小是什么?

 我来答
阿肆聊生活
高粉答主

2022-10-09 · 每个回答都超有意思的
知道大有可为答主
回答量:1.1万
采纳率:100%
帮助的人:174万
展开全部

1-√cosx的等价无穷小:x^2/4。

分析过程如下:

利用cosx=1-x^2/2+o(x^2) (1)以及

(1+x)^(1/2)=1+x/2+o(x) (2)得:

1-√cosx

=1-(1+cosx-1)^(1/2)恒等变形

=1-(1+(cosx-1)/2)+o(cosx-1)利用(2)式。

=(1-cosx)/2+o(x^2)利用(1)式。

=x^2/4+o(x^2)

极限的由来

与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用。

古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。

到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式