弧长公式
弧长s=∫√[1+y'(x)²]dx (x的积分下限a,上限b)
下限为a,上限为b,为曲线的端点对应的x的值。
弧长:意思为曲线的长度。
举例说明:
解答过程:x² + y² = 9,左半圆为x = - √(9 - y²)
令x = 3cosθ,y = 3sinθ,π/2 ≤ θ ≤ 3π/2
dx/dθ = - 3sinθ,dy/dθ = 3cosθ
ds = √[x'(θ)² + y'(θ)²] dθ = √(9sin²θ + 9cos²θ) dθ = 3dθ
∫_L y² ds= ∫(π/2-->3π/2) 9sin²θ · 3dθ
= 27/2 · ∫(π/2-->3π/2) (1 - cos2θ) dθ
= 27/2 · (θ - 1/2 · sin2θ) |(π/2-->3π/2)
= 27/2 · [(3π/2) - (π/2)]
= 27π/2
扩展资料:
弧长的其他计算公式:
l = n(圆心角)× π(圆周率)× r(半径)/180=α(圆心角弧度数)× r(半径)
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)
例:半径为1cm,45°的圆心角所对的弧长为
l=nπr/180
=45×π×1/180
=45×3.14×1/180
约等于0.785
扇形的弧长第二公式为:
扇形的弧长,事实上就是圆的其中一段边长,扇形的角度是360度的几分之一,那么扇形的弧长就是这个圆的周长的几分之一,所以我们可以得出:
扇形的弧长=2πr×角度/360
其中,2πr是圆的周长,角度为该扇形的角度值。
参考资料来源:百度百科--弧长计算公式