已知abc均为正数,且a+b+c=1,求证4<根号下3a+1+根号下3b+1+根号下3c+1《3根号下2

fnxnmn
2010-09-05 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6622万
展开全部
∵a、b、c均为正数,且a+b+c=1,∴0<a,b<c<1.
从而a-a²=(1-a)a>0 ∴a>a² 同理b>b², c>c²
√(3a+1)+√(3b+1)+√(3c+1)= √(2a+a+1)+√(2b+b+1)+√(2c+c+1)
> √(a²+2a+1)+√(b²+2b+1)+√(c²+2c+1)
=a+1+b+1+c+1=4;
另一方面,√(3a+1)•√2+√(3b+1)•√2+√(3c+1) •√2
≤((3a+1)+2)/2+((3b+1)+2)/2+((3c+1)+2)/2………此处运用基本不等式√(xy)≤(x+y)/2
=(3a+3b+3c+9)/2=6
∴√(3a+1)+√(3b+1)+√(3c+1) ≤3√2
综上知,4<√(3a+1)+√(3b+1)+√(3c+1) ≤3√2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式