如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数... 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.(1)求抛物线的解析式;(2)若点M、N时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)抛物线对称轴上是否存在一点F,使得△ACF是等腰三角形?若不存在请说明理由;若存在,请求出F点坐标. 展开
 我来答
只是个皮YH099
推荐于2016-10-16 · 超过74用户采纳过TA的回答
知道答主
回答量:119
采纳率:100%
帮助的人:60万
展开全部
解:(1)由题意可得,对称轴为x=
?4+2
2
=?1

由对称性可得B点坐标为(1,0)
则设抛物线的解析式为y=a(x+3)(x-1),
又过点 C(0,
3
),代入可解得a=?
3
3

则解析式为y=?
3
3
(x+3)(x?1)

y=?
3
3
x2?
2
3
3
x+
3


(2)∵M、N点的运动速度相同,∴BM=BN=t,
又由翻折可得,NB=NP=t,MB=MP=t
∴四边形BMPN是菱形,∴PN平行MN(即x轴)
∴△CPN相似于△CAB.
PN
AB
CN
CB
易得AB=4,BC=2
t
4
2?t
2
解得t=
4
3
∴NB=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式