几道有关复变函数的简单题

1、证明:如果f(z)=u+iv在区域D内解析,且|f(z)|或argf(z)为常数,那么f(z)是常数。2、如果f(z)=u+iv为解析函数证明当f(z)的导数不等于0... 1、证明:如果f(z)=u+iv在区域D内解析,且|f(z)|或arg f(z)为常数,那么f(z)是常数。
2、如果f(z)=u+iv为解析函数证明当f(z)的导数不等于0时,曲线族u(x,y)=C1和v(x,y)=C2必相互正交。
3、指出f(z)=1/(z*z-1)的解析区域并求其导数。
展开
 我来答
帐号已注销
2017-03-24 · TA获得超过4686个赞
知道小有建树答主
回答量:739
采纳率:100%
帮助的人:272万
展开全部

第1:

如果|f(z)|是常数,那么

又因为f解析,所以

代入第二个等式得到

得到关于u和v的线性方程组

相应的系数行列式为

根据克拉默法则,如果行列式不为0,那么u和v只有0解,此时f(z)是常数。

如果行列式为0,那么ux=0,vx=0,根据柯西黎曼条件得到uy=0,vy=0,所以f(z)也是常数。

如果arg f(z)是常数,那么

其中实函数R(x,y)非负。(因为表示f(z)的模)

那么

因为f(z)解析,所以

这是关于Rx和Ry的线性方程组,其中系数行列式为

所以Rx和Ry只有零解,所以R是常数,所以f(z)=Re^iθ是常数。证毕。

第2题:

因为f(z)解析,所以u和v可微,对u(x,y)=C1两边同时取微分得到

所以向量(ux,uy)是曲线u(x,y)=C1上点(x,y)处的法向量。

同理向量(vx,vy)是曲线v(x,y)=C1上点(x,y)处的法向量。

那么

其中箭头处利用了柯西-黎曼方程。因为法向量互相垂直,所以切向量也必定互相垂直,因此两曲线正交。(对任何C1和C2成立,所以两曲线族正交)

第3题:

奇点对应分母的零点:z=±1.所以解析区域是C\{1,-1}。

导数为

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式