设A,B都是n阶方阵,证明det([A B;B A])=det(A+B)*det(A-B) 5
1个回答
展开全部
用'表示转置, 则由A,B为正交阵有A'A = AA' = E, B'B = BB' = E. 设C = AB', 有C' = BA', CC' = AB'BA' = E. det(C) = det(A)det(B') = det(A)det(B) = -1. 由det(C+E) = det(C+CC') = det(C)det(E+C') = det(C)det(C+E) = -det(C+E), 得det(C+E) = 0. 而A+B = AB'B+B = (C+E)B, 故det(A+B) = det(C+E)det(B) = 0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询