方差的定义和性质

 我来答
中起云沈婵
2020-04-01 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:33%
帮助的人:691万
展开全部
方差是各个数据分别与其平均数之差的平方的和的平均数,用字母D表示。在概率论和数理统计中,方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着重要意义。
方差的定义:
设X是一个随机变量,若E{[X-E(X)]2}存在,则称E{[X-E(X)]2}为X的方差,记为D(X),Var(X)或DX。
即D(X)=E{[X-E(X)]2}称为方差,而σ(X)=D(X)0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大。否则,反之)
若X的取值比较集中,则方差D(X)较小,
若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
方差的性质:
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=c2D(X)。
(3)设
X

Y
是两个随机变量,则
D(X+Y)=
D(X)+D(Y)+2Cov(X,Y)
D(X
-Y)=
D(X)+D(Y)-2Cov(X,Y)
特别的,当X,Y是两个不相关的随机变量则
D(X+Y)=D(X)+D(Y),D(X-Y)=D(X)+D(Y),
此性质可以推广到有限多个两两不相关的随机变量之和的情况。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即X=c,a.s.其中E(X)=c。
(5)D(aX+bY)=a2DX+b2DY+2abCov(X,Y)。
图为信息科技(深圳)有限公司
2021-01-25 广告
标准差(Standard Deviation) ;各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
锺离竹包亥
2020-02-17 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:33%
帮助的人:936万
展开全部
定义是人们根据事物的特征规定的;
性质就事物的表观和内在所具有的特征。
比如三角形:
定义:在一个平面内,由三条直线首尾相接构成的闭合图形叫三角形。
性质:三角形有三边,三个角。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式