设函数f(x)=sinxcosx+cos²x
展开全部
f(x)=cos²x+sinxcosx
=1/简团2+1/2cos2x+1/2sin2x
=1/2+√2/2(√侍燃2/2cos2x+√2/2sin2x)
=1/2+√2/2(cosπ/4cos2x+sinπ/4sin2x)
=1/2+√2/2cos(2x-π/4)
(1)当cos(2x-π/4)=1时又ymax=1/2+√2/2
(2)将x=a/2+π/8代入f(x)中可得
f(a/2+π/8)=1/拦谈橘2+√2/2cos[2(a/2+π/8)-π/4]=1,解得a=π/4
所以s△abc=1/2bcsina=1/2×3×3×sinπ/4=9√2/4
希望对你有所帮助.
=1/简团2+1/2cos2x+1/2sin2x
=1/2+√2/2(√侍燃2/2cos2x+√2/2sin2x)
=1/2+√2/2(cosπ/4cos2x+sinπ/4sin2x)
=1/2+√2/2cos(2x-π/4)
(1)当cos(2x-π/4)=1时又ymax=1/2+√2/2
(2)将x=a/2+π/8代入f(x)中可得
f(a/2+π/8)=1/拦谈橘2+√2/2cos[2(a/2+π/8)-π/4]=1,解得a=π/4
所以s△abc=1/2bcsina=1/2×3×3×sinπ/4=9√2/4
希望对你有所帮助.
展开全部
有扒卖些符号打不出来源毕,见谅了!
f(x)=sinxcosx+cos^2
=1/2sin2x+1/2(cos2x+1)
=1/2(sin2x+cos2x)+1/2
=根号2/2sin(2x+π/4)+1/2
所以周期为π;
当春裂逗x∈【0,π/2】时;
2x+π/4∈【π/4,3π/4】
则当2x+π/4=π/2时,f(x)有最大值,为
根号2/2+1/2;
当2x+π/4=3π/4时,f(x)有最小值,为
负根号2/2+1/2
f(x)=sinxcosx+cos^2
=1/2sin2x+1/2(cos2x+1)
=1/2(sin2x+cos2x)+1/2
=根号2/2sin(2x+π/4)+1/2
所以周期为π;
当春裂逗x∈【0,π/2】时;
2x+π/4∈【π/4,3π/4】
则当2x+π/4=π/2时,f(x)有最大值,为
根号2/2+1/2;
当2x+π/4=3π/4时,f(x)有最小值,为
负根号2/2+1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询