多边形内角和怎么求
多边形内角和等于:(n - 2)×180°(n大于等于3且n为整数)。
多边形内角和定理证明:
1、在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。
因为这n个三角形的内角的和等于n180°,以O为公共顶点的n个角的和是360°。
所以n边形的内角和是n180°-2×180°=(n-2)180°。(n为边数)。
即n边形的内角和等于(n-2)×180°。(n为边数)。
2、连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形。
因为这(n-2)个三角形的内角和都等于(n-2)180°(n为边数)。
所以n边形的内角和是(n-2)×180°。
3、在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形。
这(n-1)个三角形的内角和等于(n-1)180°(n为边数)。
以P为公共顶点的(n-1)个角的和是180°。
所以n边形的内角和是(n-1)180°-180°=(n-2)180°。(n为边数)。
重点:多边形内角和定理及推论的应用。
难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
探索多边形内角和推导:
1.提出问题。
由三角形内角和为180°,四边形内角和为360° ,猜想多边形的内角和度数与边数有关。具体是什么关系?
2.启发学生猜想证明的思路。
复习四边形内角和定理的证明过程,强调把四边形分割成三角形,从而"把四边形内角和转化为三角形内角和来研究"这种化归的思想。引导学生类比联想,用化归的思想和从特殊到一般的方法研究五边形、六边形、七边形……的情况。
教师应帮助学生分析出解决问题的关键是多边形分割转化成有公共顶点的三角形的方法,以及割成三角形的个数与多边数的关系;引导学生认识分割方法的多样性(见设计说明),选择其中较为简单并引导大部分学生认识过程的分割方法,推导五边形、六边形……的情况,归纳出n边形内角和的结论。
3.得到定理:n边形的内角和等于(n-2)180°。
说明:多边形的内角和仅与边数有关,与多边形的大小、形状无关;强调凸多边形的内角a的范围:0°<α<180°。