如何求解椭球面上的一个点的坐标?
展开全部
椭球面方程:x²/a²+y²/b²+z²/c²=1(a>0, b>0, c>0)
设椭球面上有一点P(x₀, y₀, z₀)
椭球面在P点处的切平面方程为x*x₀/a²+y*y₀/b²+z*z₀/c²=1
考虑到平面的一般方程Ax+By+Cz+D=0及平面的法向量n=(A,B,C)
故椭球面在P点处的法向量为(x₀/a², y₀/b², z₀/c²)
若以极坐标来表示点P,则为(a*sinφcosθ, b*sinφsinθ, c*cosφ)(0≤θ<2π,0≤φ≤π)
即椭球面在P点处的法向量可表示为(sinφcosθ/a, sinφsinθ/b, cosφ/c)
设椭球面上有一点P(x₀, y₀, z₀)
椭球面在P点处的切平面方程为x*x₀/a²+y*y₀/b²+z*z₀/c²=1
考虑到平面的一般方程Ax+By+Cz+D=0及平面的法向量n=(A,B,C)
故椭球面在P点处的法向量为(x₀/a², y₀/b², z₀/c²)
若以极坐标来表示点P,则为(a*sinφcosθ, b*sinφsinθ, c*cosφ)(0≤θ<2π,0≤φ≤π)
即椭球面在P点处的法向量可表示为(sinφcosθ/a, sinφsinθ/b, cosφ/c)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
武汉颐光科技有限公司
2018-11-26 广告
2018-11-26 广告
椭偏仪是通过测量光在介质表面反射前后椭偏态(椭偏参数 ψ 和 Δ)变化,获取材料的光学常数和结构信息。目前椭偏行业最前沿的技术是基于双旋转消光式补偿器的穆勒矩阵椭偏仪,一次性就可以测量16个参数,测量时间几秒即可完成,精度非常高。据了解,国...
点击进入详情页
本回答由武汉颐光科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询