证明:如果向量组α1α2α3线性无关,那么向量组a1α1+b2α2,a2α2+b3α3,a3α3+b1α1线性无关的充分必要条件是:a1a2a3≠b1b2b3
1个回答
关注
展开全部
咨询记录 · 回答于2023-12-25
证明:如果向量组α1α2α3线性无关,那么向量组a1α1+b2α2,a2α2+b3α3,a3α3+b1α1线旦裤性无模竖简关的充分必要纤渣条件是:a1a2a3≠b1b2b3
设向量组
$\begin{aligned}
\alpha_1a_1 + \alpha_2b_2, \alpha_2a_2 + \alpha_3b_3, \alpha_3a_3 + \alpha_1b_1
\end{aligned}$的任何非零线弯档性组合都等于零向量,即存在不全为零的常数$k_1, k_2, k_3$,使得:
$\begin{aligned}
k_1(\alpha_1a_1 + \alpha_2b_2) + k_2(\alpha_2a_2 + \alpha_3b_3) + k_3(\alpha_3a_3 + \alpha_1b_1) = 0
\end{aligned}$将上式展开,得到:
$\begin{aligned}
(k_1a_1 + k_3b_1)\alpha_1 + (k_1b_2 + k_2a_2)\alpha_2 + (k_2b_3 + k_3a_3)\alpha_3 = 0
\end{aligned}$由于向量组$\alpha_1, \alpha_2, \alpha_3$线性无关,因此上式中所有系数都应该为零。所以我们可以得枣闹没到如下三个等式:
$\begin{aligned}
k_1a_1 + k_3b_1 = 0 \\
k_1b_2 + k_2a_2 = 0 \\
k_2b_3 + k_3a_3 = 0
\end{aligned}$解得:
$\begin{aligned}
k_1 = -\frac{b_2b_3}{a_1a_2a_3} \\
k_2 = -\frac{a_1a_3}{b_1b_2b_3} \\
k_3 = -\frac{b_1a_2}{a_1a_2a_3}
\end{aligned}$由于向量组$a_1\alpha_1+b_2\alpha_2, a_2\alpha_2+b_3\alpha_3, a_3\alpha_3+b_1\alpha_1$是线性无关的,因此$k_1, k_2, k_3$必须全为零。代入上式可以得到:
$\begin{aligned}
-\frac{b_2b_3}{a_1a_2a_3} = 0 \\
-\frac{a_1a_3}{b_1b_2b_3} = 0 \\
-\frac{b_1a_2}{a_1a_2a_3} = 0
\end{aligned}$因此,$a_{1}a_{2}a_{3} \neq b_{1}b_{2}b_{3}$是向量组$a_{1}\alpha_{1}+b_{2}\alpha_{2}, a_{2}\alpha_{2}+b_{3}\alpha_{3}, a_{3}\alpha_{3}+b_{1}\alpha_{1}$线性无关的凳纳充分必要条件。