f(x)在【0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明:g(x)=f(x)/x在
2个回答
展开全部
∵f(x)的导数单调递增
∴f‘’(x)>0
g'(x)=[xf‘(x)-f(x)]/(x^2)
令F(x)=xf‘(x)-f(x)
则F'(x)=f‘(x)+xf‘'(x)-f'(x)=xf‘'(x)
在(0,+无穷)上F'(x)=xf‘'(x)>0
所以F(x)单调递增
所以F(x)>F(0)=0
在(0,+无穷)上,x^2>0
所以g'(x)=F(x)/(x^2)>0
所以g(x)=f(x)/x在(0,+无穷)上单调递增
∴f‘’(x)>0
g'(x)=[xf‘(x)-f(x)]/(x^2)
令F(x)=xf‘(x)-f(x)
则F'(x)=f‘(x)+xf‘'(x)-f'(x)=xf‘'(x)
在(0,+无穷)上F'(x)=xf‘'(x)>0
所以F(x)单调递增
所以F(x)>F(0)=0
在(0,+无穷)上,x^2>0
所以g'(x)=F(x)/(x^2)>0
所以g(x)=f(x)/x在(0,+无穷)上单调递增
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询