已知数列{a n }的前n项和为S n ,且S n =n(n+1)(n∈N * ).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若
已知数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:an=b13+1+b232+1+b333+1...
已知数列{a n }的前n项和为S n ,且S n =n(n+1)(n∈N * ).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足: a n = b 1 3+1 + b 2 3 2 +1 + b 3 3 3 +1 +…+ b n 3 n +1 ,求数列{b n }的通项公式;(Ⅲ)令 c n = a n b n 4 (n∈N * ),求数列{c n }的前n项和T n .
展开
展开全部
(Ⅰ)当n=1时,a 1 =S 1 =2, 当n≥2时,a n =S n -S n-1 =n(n+1)-(n-1)n=2n, 知a 1 =2满足该式, ∴数列{a n }的通项公式为a n =2n.(2分) (Ⅱ)∵ a n =
∴ a n+1 =
②-①得:
b n+1 =2(3 n+1 +1), 故b n =2(3 n +1)(n∈N * ).(6分) (Ⅲ) c n =
∴T n =c 1 +c 2 +c 3 +…+c n =(1×3+2×3 2 +3×3 3 +…+n×3 n )+(1+2+…+n)(8分) 令H n =1×3+2×3 2 +3×3 3 +…+n×3 n ,① 则3H n =1×3 2 +2×3 3 +3×3 4 +…+n×3 n+1 ② ①-②得:-2H n =3+3 2 +3 3 +…+3 n -n×3 n+1 =
∴ H n =
∴数列{c n }的前n项和 T n =
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询