1、常见组合:
3,4,5 : 勾三股四弦五
5,12,13 : 5·21(12)记一生(13)
6,8,10: 连续的偶数
2、特殊组合:
连续的勾股数只有3,4,5
连续的偶数勾股数只有6,8,10
勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。
扩展资料:
一、公式
a=m,b=(m^2 / k - k) / 2,c=(m^2 / k + k) / 2 ①
其中m ≥3
1、当m确定为任意一个 ≥3的奇数时,k={1,m^2的所有小于m的因子}
2、当m确定为任意一个 ≥4的偶数时,k={m^2 / 2的所有小于m的偶数因子}
二、常见组合套路
1、当a为大于1的奇数2n+1时,b=2n²+2n, c=2n²+2n+1。
实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
2、当a为大于4的偶数2n时,b=n²-1, c=n²+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)
参考资料来源:百度百科-勾股数
(1) (3, 4, 5), (6, 8,10) … …
3n,4n,5n (n是正整数)
(2) (5,12,13) ,( 7,24,25), ( 9,40,41) … …
2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数)
(3) (8,15,17), (12,35,37) … …
2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数)
(4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)
简单列出一些:
3 4 5
5 12 13
7 24 25
9 40 41
11 60 61
13 84 85
15 112 113
8,15,17
12,35,37
20,21,29
20,99,101
48,55,73
60,91,109
i=3 j=4 k=5;
i=5 j=12 k=13;
i=6 j=8 k=10;
i=7 j=24 k=25;
i=8 j=15 k=17;
i=9 j=12 k=15;
i=9 j=40 k=41;
i=10 j=24 k=26;
i=11 j=60 k=61;
i=12 j=16 k=20;
i=12 j=35 k=37;
i=13 j=84 k=85;
i=14 j=48 k=50;
i=15 j=20 k=25;
i=15 j=36 k=39;
i=16 j=30 k=34;
i=16 j=63 k=65;
i=18 j=24 k=30;
i=18 j=80 k=82;
i=20 j=21 k=29;
i=20 j=48 k=52;
i=21 j=28 k=35;
i=21 j=72 k=75;
i=24 j=32 k=40;
i=24 j=45 k=51;
i=24 j=70 k=74;
i=25 j=60 k=65;
i=27 j=36 k=45;
i=28 j=45 k=53;
i=30 j=40 k=50;
i=30 j=72 k=78;
i=32 j=60 k=68;
i=33 j=44 k=55;
i=33 j=56 k=65;
i=35 j=84 k=91;
i=36 j=48 k=60;
i=36 j=77 k=85;
i=39 j=52 k=65;
i=39 j=80 k=89;
i=40 j=42 k=58;
i=40 j=75 k=85;
i=42 j=56 k=70;
i=45 j=60 k=75;
i=48 j=55 k=73;
i=48 j=64 k=80;
i=51 j=68 k=85;
i=54 j=72 k=90;
i=57 j=76 k=95;
i=60 j=63 k=87;
i=65 j=72 k=97这是100以内的
(1)
(3,
4,
5),
(6,
8,10)
…
…
3n,4n,5n
(n是正整数)
(2)
(5,12,13)
,(
7,24,25),
(
9,40,41)
…
…
2n
+
1,
2n^2
+
2n,
2n^2
+
2n
+
1
(n是正整数)
(3)
(8,15,17),
(12,35,37)
…
…
2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1
(n是正整数)
(4)m^2-n^2,2mn,m^2+n^2
(m、n均是正整数,mn)
简单列出一些:3
4
55
12
137
24
259
40
4111
60
6113
84
8515
112
113