谁给我解二元一次方程的方法,就是怎样解。
3个回答
展开全部
{x-y=3
①
{3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
所以x=4
则:这个二元一次方程组的解
{x=4
{y=1
加减消元法
(1)概念,消去一个未知数.
2X+5Y=7
(1)
3X+Y=4
(2)
(1)式乘以3就变成了,消去一个未知数.
);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,从而将二元一次方程化为一元一次方程:3*(2X+5Y)=7*3
即
6X+15Y=21
(3)式
(2)式乘以2就变成了,得到一个一元一次方程,最后求得方程组的解.
这种解方程组的方法叫做代入消元法,简称代入法.
(2)代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,得到一个一元一次方程(在代入时,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,切忌只乘以一边,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边):将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的,这种解方程组的方法叫做加减消元法,简称加减法.
(2)加减法解二元一次方程组的步骤
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,最后求得方程组的解,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).
例题,消去一个未知数代入消元法
(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数
①
{3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
所以x=4
则:这个二元一次方程组的解
{x=4
{y=1
加减消元法
(1)概念,消去一个未知数.
2X+5Y=7
(1)
3X+Y=4
(2)
(1)式乘以3就变成了,消去一个未知数.
);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,从而将二元一次方程化为一元一次方程:3*(2X+5Y)=7*3
即
6X+15Y=21
(3)式
(2)式乘以2就变成了,得到一个一元一次方程,最后求得方程组的解.
这种解方程组的方法叫做代入消元法,简称代入法.
(2)代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,得到一个一元一次方程(在代入时,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,切忌只乘以一边,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边):将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的,这种解方程组的方法叫做加减消元法,简称加减法.
(2)加减法解二元一次方程组的步骤
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,最后求得方程组的解,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).
例题,消去一个未知数代入消元法
(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二元一次方程常用解法解法一般来说有两种:
1.代入消元法:2,加减消元法.
这两种解法在初中数学教科书中有详细叙述这里就不在说了,
我们来看一下教科书中没有的,但比较适用的几种解法
(一)加减-代入混合使用的方法.
例1,13x+14y=41
(1)
14x+13y=40
(2)
解:(2)-(1)得
x-y=-1
x=y-1
(3)
把(3)代入(1)得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入(3)得
x=1
所以:x=1,y=2
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.
(二)换元法
例2,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
(3)另类换元
例3,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可写为:5t+6*4t=29
29t=29
t=1
所以x=1,y=4
还有整体法和换元法类似。。。。。。
1.代入消元法:2,加减消元法.
这两种解法在初中数学教科书中有详细叙述这里就不在说了,
我们来看一下教科书中没有的,但比较适用的几种解法
(一)加减-代入混合使用的方法.
例1,13x+14y=41
(1)
14x+13y=40
(2)
解:(2)-(1)得
x-y=-1
x=y-1
(3)
把(3)代入(1)得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入(3)得
x=1
所以:x=1,y=2
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.
(二)换元法
例2,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
(3)另类换元
例3,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可写为:5t+6*4t=29
29t=29
t=1
所以x=1,y=4
还有整体法和换元法类似。。。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可用“代入消元法”或“加减消元法”
代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.
);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边,此过程可以在熟练后省去)
加减法解二元一次方程组的步骤
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解
代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.
);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边,此过程可以在熟练后省去)
加减法解二元一次方程组的步骤
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询