数列求解第二问 30
3个回答
展开全部
考点】
数列的求和
数列的概念及简单表示法
【解析】
(1)由题得an2+an=2Sn,an+12+an+1=2Sn+1,两式子相减得{an}是首项为1,公差为1的等差数列,即可求数列{an}的通项公式;
(2)若bn=
an
2an-1
,利用错位相减法,求数列{bn}的前n项和Tn.
【解答】
(1)由题得a2n+an=2Sn,a2n+1+an+1=2Sn+1,两式子相减得:
结合an>0得an+1−an=1 …..(4分)
令n=1得a21+a1=2S1,即a1=1,
所以{an}是首项为1,公差为1的等差数列,即an=n…..(6分)
(2)因为bn=an2an−1=n2n−1(n⩾2)
所以Tn=22+…n2n−1+n+12n ①
12Tn=222+…+n2n+n+12n+1 ②…..(8分)
①−②得12Tn=1+122+…+12n−n+12n+1=32−n+32n+1,
所以数列{bn}的前n项和Tn=3−n+32n.…
数列的求和
数列的概念及简单表示法
【解析】
(1)由题得an2+an=2Sn,an+12+an+1=2Sn+1,两式子相减得{an}是首项为1,公差为1的等差数列,即可求数列{an}的通项公式;
(2)若bn=
an
2an-1
,利用错位相减法,求数列{bn}的前n项和Tn.
【解答】
(1)由题得a2n+an=2Sn,a2n+1+an+1=2Sn+1,两式子相减得:
结合an>0得an+1−an=1 …..(4分)
令n=1得a21+a1=2S1,即a1=1,
所以{an}是首项为1,公差为1的等差数列,即an=n…..(6分)
(2)因为bn=an2an−1=n2n−1(n⩾2)
所以Tn=22+…n2n−1+n+12n ①
12Tn=222+…+n2n+n+12n+1 ②…..(8分)
①−②得12Tn=1+122+…+12n−n+12n+1=32−n+32n+1,
所以数列{bn}的前n项和Tn=3−n+32n.…
展开全部
(1)
(an)^2 +an = 2Sn
n=1
(a1)^2 - a1 =0
a1=1
for n>=2
an = Sn - S(n-1)
=(1/2) [(an)^2 +an] -(1/2) [ (a(n-1))^2 +a(n-1) ]
(1/2) [(an)^2 -an] -(1/2) [ (a(n-1))^2 +a(n-1) ] =0
[ an -a(n-1)].[ an +a(n-1) ] -[ an + a(n-1) ] =0
[ an + a(n-1) ] . [ an -a(n-1) -1 ] =0
an - a(n-1) -1=0
an- a(n-1) =1
an -a1 = n-1
an =n
(2)
let
S= 1.(1/2)^0 +2.(1/2)^1+...+n.(1/2)^(n-1) (1)
(1/2)S= 1.(1/2)^1 +2.(1/2)^2+...+n.(1/2)^n (2)
(1)-(2)
(1/2)S = [ 1/2^0 +1/2^1+...+1/2^(n-1) ] -n.(1/2)^n
= 2( 1- 1/2^n) -n.(1/2)^n
S = 4( 1- 1/2^n) -2n.(1/2)^n
bn
=an/2^[a(n-1)]
=n/2^(n-1)
Tn
=b1+b2+...+bn
=S
=4( 1- 1/2^n) -2n.(1/2)^n
=4 -(2n+4).(1/2)^n
(an)^2 +an = 2Sn
n=1
(a1)^2 - a1 =0
a1=1
for n>=2
an = Sn - S(n-1)
=(1/2) [(an)^2 +an] -(1/2) [ (a(n-1))^2 +a(n-1) ]
(1/2) [(an)^2 -an] -(1/2) [ (a(n-1))^2 +a(n-1) ] =0
[ an -a(n-1)].[ an +a(n-1) ] -[ an + a(n-1) ] =0
[ an + a(n-1) ] . [ an -a(n-1) -1 ] =0
an - a(n-1) -1=0
an- a(n-1) =1
an -a1 = n-1
an =n
(2)
let
S= 1.(1/2)^0 +2.(1/2)^1+...+n.(1/2)^(n-1) (1)
(1/2)S= 1.(1/2)^1 +2.(1/2)^2+...+n.(1/2)^n (2)
(1)-(2)
(1/2)S = [ 1/2^0 +1/2^1+...+1/2^(n-1) ] -n.(1/2)^n
= 2( 1- 1/2^n) -n.(1/2)^n
S = 4( 1- 1/2^n) -2n.(1/2)^n
bn
=an/2^[a(n-1)]
=n/2^(n-1)
Tn
=b1+b2+...+bn
=S
=4( 1- 1/2^n) -2n.(1/2)^n
=4 -(2n+4).(1/2)^n
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询