数学题:已知圆C与圆x^2+y^2-2x=0相外切

已知圆C与圆x^2+y^2-2x=0相外切,并且与直线x+√3y=0相切与点Q(3,-√3),求圆C的方程... 已知圆C与圆x^2+y^2-2x=0相外切,并且与直线x+√3y=0相切与点Q(3,-√3),求圆C的方程 展开
 我来答
茹翊神谕者

2022-05-11 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1540万
展开全部

简单计算一下,答案如图所示

赖生韩香彤
2019-10-06 · TA获得超过3736个赞
知道小有建树答主
回答量:3080
采纳率:27%
帮助的人:407万
展开全部
方法一
普通方法
x^2+y^2-2x=0,整理得:(x-1)^2+y^2=1,
圆心:(1,0)
半径:r=1
设圆C半径为R,圆心C(a,b)
即标准方程为(x-a)^2+(y-b)^2=R^2圆C与圆x^2+y^2-2x=0相外切,圆心距等于半径和
√[(a-1)^2+b^2]=R+1,①
与直线x+√3y=0相切,圆心到直线的距离等于半径
R=|a+√3b|/2,②
切点为Q(3,-√3)则圆过此点
(3-a)^2+(√3-b)^2=R^2,③
联立①②③三式,解得:a=4,b=0,R=2C的标准方程为:(x-4)^2+y^2=4
方法二
用圆系方程
设点圆
(x-3)^2+(y+根号3)^2=0
则与直线x+根号3y=0切于(3,-根号3)的圆可表示成
(x-3)^2+(y+根号3)^2+t(x+根号3y)=0
两圆方程相减得外公切线方程
(t-4)x+根号3(t+2)y+12=0
(1,0)到直线距离为已知圆半径1
则(t+8)^2=(t-4)^2+3(t+2)^2
得t=6
t=-2
整理得:(x-4)^2+y^2=4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式