|x|+|y|+|z|=1的图像是怎么样的?
|x|+|y|+|z|=1是一个边长是根号2的正八面体的表面。|x|+|y|+|z|=1表面积S=8*(1/2)*sin60°*(√2)^2=4√3。
以棱长为根号二的正八面体的几何中心作为原点,将正八面体的对角线作为x,y,z轴建立三维直角坐标贺拿系(正八面体的3条对角线两两正交,这也是正八面体被叫做“正轴形”的原因)。
则我们能将正八面体的顶点坐标记为( ±1, 0, 0 ),( 0, ±1, 0 ),( 0, 0, ±1 ),正八面体表皮辩面方程为: |x|+|y|+|z|=1。
相关如下:
正八面体作为3维的正轴体正多面体,自身拥有较高的对称性,它的所有面都是不可区分的。可是我们也可以想象将正八面体的面“涂上”不同的“颜色”。
使它其的不同面拥有不同的“几何意义”,使正八面体拥有不同的对称性。正八面体的对称群是Oh(正八面体群),是三维的超正八面体群。
在此对称性下,正八面体的所有面都带有相同对“颜色”,对称性最高,群阶48。该群的子群体现了正八面体更低的对称性:Td(群阶24),截半正四面体的对称群;D3d(群阶12)。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。
函数关系中自变量可取值的集合叫做函数的定义域。求用解析式表示的函数的定义域,就是求使函数各个组成部分有意义的集合的交集,对实际问题中函数关系定义域,还需要考虑实际禅握搭问题的条件。