一道高中不等式证明题 若a>0,b>0,a+b=1,证明 (a+1/a)×(b+1/b)≥ 25/4 我来答 1个回答 #热议# 空调使用不当可能引发哪些疾病? 科创17 2022-07-07 · TA获得超过5905个赞 知道小有建树答主 回答量:2846 采纳率:100% 帮助的人:175万 我也去答题访问个人页 关注 展开全部 原式等于(ab+1/ab)+(a/b+b/a),分两组进行求最小值,对于第一组,显然0 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-10-19 一道高中数学不等式证明题.设a,b,c>0,求证1/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c)? 2022-06-02 高一数学证明题(基本不等式) 已知a、b、c∈R+,求证:(a+b+c)[1/(a+b)+1/c]≥4 2022-05-27 一道高二的不等式证明题 已知a>b>0,c<d<0.求证:b/(a-c)<a/(b-d) 2022-08-29 高数学的好的进来啊.证明不等式:(a+b)e∧(a+b)<ae∧2a+be∧2b,其中a,b>0. 2022-10-31 高一数学证明题(基本不等式)已知a、b、c∈R+,求证:(a+b+c)[1/(a+b)+1/c]≥4? 2022-08-07 高中不等式证明 已知abc=1,且a,b,c为实数,证明:1/a+1/b+1/c+3/(a+b+c)>=4 2016-11-12 证明下列不等式: 当a>b>0,n>1时,nbⁿ-¹(a-b)<naⁿ-¹(a-b) 14 2011-08-07 高中 不等式 已知 a,b,c均为正数。证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3 3 为你推荐: