什么是双曲线的焦半径?
双曲线的焦半径及其应用:
1:定义:双曲线上任意一点M与双曲线焦点 的连线段,叫做双曲线的焦半径。
2:焦半径公式的推导:
利用双曲线的第二定义:设双曲线 , 是其左右焦点。
则由第二定义:
同理:
即有焦点在x轴上的双曲线的焦半径公式:
同理有焦点在y轴上的双曲线的焦半径公式:
( 其中 分别是双曲线的下上焦点)
注意:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果要去绝对值,需要对点的位置进行讨论。
两种形式的区别可以记为:左加右减,上减下加(带绝对值号)
椭圆上一点P(x0,y0)与焦点F连结的线段PF叫做椭圆的焦半径,与左焦点F1对应的焦半径叫做左焦半径,与右焦点F2对应的焦半径叫右焦半径.一般用椭圆的第二定义来推导焦半径长的公式.
=a+ex0
又|PF2|+|PF1|=2a,
∴|PF2|=2a-|PF1|=a-ex0.
即当椭圆的焦点在x轴上时,椭圆的左、右焦半径分别是
|PF1|=a+ey0,|PF2|=a-ey0
的下、上焦半径分别是
|PF1|=a+ey0,|PF2|=a-ey0
在求焦点弦长时,注意焦半径公式的使用
参考资料:http://zhidao.baidu.com/question/8132208.html?si=3
拓展资料
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex
过上焦点的半径r=a-ey
过下焦点的半径r=a+ey
双曲线过右焦点的半径r=|ex-a|
双曲线过左焦点的半径r=|ex+a|
焦半径双曲线过下焦点的半径r=|ey+a|
双曲线过上焦点的半径r=|ey-a|
(其中e是椭圆的 离心率,e=c/a)
抛物线焦点x,开口右的半径r=p/2+x0;焦点x,开口左的半径r=p/2-x0;焦点y,开口上的半径r=p/2+y0;焦点y,开口下的半径r=p/2-y0
记忆方法:
椭圆的焦半径是左加,右减;下加,上减。 双曲线的焦半径是左加套绝对值,右减套绝对值;下加套绝对值,上减套绝对值。
2023-06-12 广告